
How to drive trusted decisions without changing your current data infrastructure.
Learn more about DataOS® in our white paper.
Data silos are where insights go to die. Everyone knows this, but the retail sector experiences unique challenges when it comes to bridging those gaps. Customers demand more personalization and better interactions with brands, making overcoming data silos one of the most essential pieces for retailers, consumer packaged goods (CPG) companies, and eCommerce brands.
Silos prevent companies from achieving the elusive “customer 360” model, so much so that whispers are growing to abandon it altogether. Gartner itself cites growing regulatory and privacy concerns as well as outdated data collection methods to suggest companies will soon abandon the notion of Customer 360. Instead, we think solving data silos and achieving true Customer 360 requires a new framework for operations: a data operating system.
Data silos are isolated islands of data accessible to one department of an organization but not to all. Overcoming data silos seems simple — connect data sources to data tools and enable the data to flow freely between the silos. But when companies pull back the curtain on this particular strategy, they’re met with significant complexity.
Silos cause teams to lose the context of their data. This is a critical loss. Even when teams do have access to other data silos, the process of connecting them and moving data between them takes too much time and too many system resources to make it feasible for all but the most important analytics. As companies grapple with growing complexity and fragmentation, they’ll need to think of their data solutions in a new way. In retail, this proves especially important.
Most advice centers around internal silos, i.e., departments not sharing their data with each other. For retail and CPG, the equation also includes external silos.
For CPG, missing siloed data is often housed in second-party data, which comes from retail stores selling their goods. Second or third-party data must first be acquired and then scrubbed to ensure quality and compatibility with existing data systems. This adds difficulty to simply “connecting data sources to data tools.”
Creating complex workflows requires expertise. If companies are struggling to find the talent to build these complex systems, it puts strain on existing teams and delays solving silos. And even when teams do possess the expertise, the abundance of manual processes involved in ensuring data is secure, consistent, and up to date makes mistakes more likely.
Silos don’t happen by accident. The organizational structure of a company can make it challenging for them to even know what’s missing. For example, many CPG companies may not even realize the wealth of data that could be available to them from their partners. In addition, organizations with many subcomponents face a new problem: who decides governance and permissions? There may not be a single governing entity organization-wide.
Companies address silos in a variety of ways, but none fully address the short and long-term consequences of restricting information flow.
Choosing a data operating system addresses retail’s unique challenges with maintaining data flow, handling second and third-party data, and scale.
Companies don’t need to replace their current data tools and systems. A data operating system creates an operational layer that brings everything into one system. Users across the enterprise can examine what data is available for queries, where that data came from, and what other pipelines are using that data.
An operational layer allows an organization to see where data comes from and how it’s being used. It reduces duplicate instances of data and helps companies understand the impact that architecture decisions will have.
Companies can lose track of governance as teams make copies of data. Attribute-based governance controls provide a single view of who accesses what, and those controls deploy across the entire data ecosystem. Data frees up while maintaining a consistent governance protocol that scales with the company.
One of the biggest frustrations with current Customer 360 solutions is system rigidity. Right now, constructing a 360 view requires tremendous technical commitment, not to mention financial investments. A data operating system doesn’t introduce third-party vendors, however. It ties together everything in the company’s current stack and adjusts as that stack evolves.
A data operating system offers a path toward customer 360 by linking different data sources and tools into one central dashboard. It provides visibility into the quality of data, where data came from, and who is using it.
The Modern Data Company’s DataOS is such an operating system. Instead of farming out data capability to a third party and suffering from vendor lock-in, DataOS truly frees up data. It allows companies a complete view and takes just hours to deploy. It’s time to discover how to achieve the fabled Customer 360 with one future-proof solution.
Discover how DataOS can maximize the value of data and enable full digital transformation by downloading our white paper “A Modern Data Strategy for Enterprises.”
Be the first to know about the latest insights from Modern.
Technical debt is an ongoing issue no one should expect to square away because as technology advances, even today's top systems will eventually achieve full "legacy" status. However, if you don't keep on top of it, technical debt will eventually cause significant...
Technical debt is an issue that often isn’t given the attention it deserves. Companies can even get away with ignoring it for quite a while. However, once it rears its ugly head, technical debt can be incredibly costly both in terms of money and reputation. Look no...
Data governance can be a powerful agent in scaling the use and distribution of trusted data throughout the company. However, more often than not, it conjures up the idea of a central authority strictly guarding against such access. In this 3-part series, we’ll cover...
Hospitals and healthcare organizations have no shortage of obstacles moving into 2023. Despite this dire proclamation, the healthcare industry has the opportunity to transform itself as long as it sets the right goals and supports them with analytics. Let’s look at...
Is Your Head Too High up in the Cloud? There is no doubt that the cloud is here to stay and that it will be a part of every company’s future data and analytics strategy. However, knowing that the cloud is an important piece of the puzzle does not mean that companies...
Not Getting Value from Your Data Transformation? Fix itImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure CLV. In the past, organizations have struggled...
Not Getting Value from Your Data Transformation? Fix itImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure CLV. In the past, organizations have struggled...
Get to the Future Faster - Modernize Your Manufacturing Data Architecture Without Ripping and ReplacingImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure...
Get to the Future Faster - Modernize Your Manufacturing Data Architecture Without Ripping and ReplacingImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure...
Get to the Future Faster - Modernize Your Manufacturing Data Architecture Without Ripping and ReplacingImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure...