
How to drive trusted decisions without changing your current data infrastructure.
Learn more about DataOS® in our white paper.
In our previous post, The Pros and Cons of Leading Data Management and Storage Solutions, we untangled the differences among data lakes, data warehouses, data lakehouses, data hubs, and data operating systems. Remember to read part one if you need a quick refresher.
Companies need more than definitions. In a world where technology evolves, and data assets have exploded in volume, it helps to know the best use cases for each of these solutions and when to avoid them. Here’s a quick guide to get you started.
What factors are most important when building a data management ecosystem?
To choose the most suitable data management solution for your organization, consider the following factors:
By carefully evaluating these factors and understanding the features and limitations of each solution, you can select the most suitable data management approach for your organization’s needs.
Here is a quick guide for determining a solution for a specific use case and when to choose something different.
Choose a data lake if your organization:
Avoid data lakes if your organization:
Choose a data warehouse if your organization:
Avoid data warehouses if your organization:
Choose a data lakehouse if your organization:
Avoid data lakehouses if your organization:
Choose a data operating system if your organization:
Under most circumstances, there is never a reason to avoid data operating systems. Here’s how to choose a data operating system that helps your data strategy evolve.
DataOS is the only end-to-end data operating system, and it works with all other data management and storage solutions.
DataOS helps companies overcome integration challenges and operationalize their data. It connects all tools and data sources — from legacy systems to brand-new technology investments — within a company’s technology ecosystem and provides a flexible and composable way to operationalize data without disrupting business.
Additionally, it removes the need for heavy data expertise, empowering business users to access data insights quickly and easily. While IT can still build complex pipelines and data products using a command line interface, the self-serve capabilities within DataOS allow business users to simply drag and drop the data outcomes they need. DataOS puts organizations on the fastest path from data to insight.
No matter what you have in your toolkit — whether it’s a data lake, warehouse, lake house, or hub —DataOS is the operational layer you need to become a truly data-driven organization.
Be the first to know about the latest insights from Modern.
Data lakes, data warehouses, data hubs, data lakehouses, and data operating systems are data management and storage solutions designed to meet different needs in data analytics, integration, and processing. Each has unique advantages and drawbacks, and the right...
What is a data operating system? On the surface, it's an operating system designed specifically for managing and processing large amounts of data. It typically provides a scalable and flexible infrastructure for storing, processing, and analyzing big data and should...
Prevention and early intervention are essential to building an effective healthcare approach that supports patients from start to finish. The critical component of this approach is predictive analytics — analyzing big data gathered from patients, consumers, and...
Technical debt is something that many companies are aware of and are attempting to address. It is a big enough issue that several of our recent blog posts (Lessons in Technical Debt from Southwest Airlines, Start Paying Down Your Technical Debt Today, and A Better Way...
Technical debt is an ongoing issue no one should expect to square away because as technology advances, even today's top systems will eventually achieve full "legacy" status. However, if you don't keep on top of it, technical debt will eventually cause significant...
Data Mesh + Patient360: A Modern Revolution for Healthcare DataHealthcare organizations are sitting on a treasure trove of customer data. Operationalizing that data makes it actionable and usable, helping improve services, costs, and patient outcomes. However,...
The Modern Data Company BriefThe Modern Data Company is radically simplifying data architecture with its paradigm-shifting data operating system, DataOS. We're replacing overwhelm with composability, reinventing governance, and connecting legacy systems to your newest...
DataOS® – The Fastest Path from Data to DecisionDataOS is the world's first fully-integrated data operating system designed to move from companies from data to decision in weeks instead of months. Discover what makes DataOS different from the competition and how...
Not Getting Value from Your Data Transformation? Fix itImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure CLV. In the past, organizations have struggled...
DataOS® Solution:AI/ML 70% of AI initiatives fail and teams spend the vast majority of their time simply prepping data for platforms, leaving very little left over for gaining insights and driving business value. But an AI/ML platform powered by DataOS can achieve...