
How to drive trusted decisions without changing your current data infrastructure.
Learn more about DataOS® in our white paper.
Data tools have not fully addressed today’s requirements for the infrastructure layer of the data stack. The Modern Data Company (Modern) believes we’re entering the golden age of data science. Still, in order for enterprises to realize the full value of their data assets, they need the final infrastructure layer in place.
Today, most companies are using separate infrastructures to handle the same data. This makes no sense. They’re stitching together tools to create a semblance of infrastructure, but they end up with little data ecosystems that don’t talk to each other. Instead, they need an operational data layer that provides a common, consistent layer of data to integrate everything into one single view — introducing the data operating system.
The tech industry loves the term “disruption,” and for good reason. It heralds innovation. Often it means replacing an older, less efficient system with one designed to accomplish the same thing — maybe in less time, with fewer errors, or at lower cost, for example.
In business terms, disruption isn’t always the foundation for excitement. It can spell downtime, upheaval in operations, lost revenue, and potentially even lost people. Disruptive technology can be a boon for the enterprise, but the implementation approach could be the difference between failure and transformation.
A data operating system like Modern’s DataOS is a disruptive technology in terms of innovation. It creates the missing operational layer among data tools, assets, and infrastructures to unite data flow across the enterprise. Think about it like this.
Across history, humans have invented technologies that replaced traditional ways of doing things. For example, textiles used to be handmade, making clothing a laborious and challenging thing to create. Now, with large machinery to make even precious materials, everyone can have a closet full of clothing without investing their life savings.
Unfortunately, that meant a significant disruption in the textile industry. Where people previously made cloth by hand, only a few traditional artisanal shops remain. Although we now have productized clothing and material-making to ensure widespread accessibility and availability, the entire industry has changed in the face of the disruptive innovations that came over time.
Similarly, data has also exploded in terms of demand and volume. Companies have more data than ever before but struggle to scale solutions that can extract value. Current tools do not productize data and prevent companies from leveraging their data’s full power. A data operating system can disrupt this system by creating an entirely new layer within the data stack that ties current investments together without negatively disrupting how the current elements of the system operate individually.
Enterprises worried about what this disruption means for everyday operations can take note. Modern’s data operating system only disrupts the way the enterprise approaches data. It does not disrupt day-to-day operations.
DataOS works with whatever the enterprise is currently using. For example, if companies have already heavily invested in cloud data stores, DataOS can supply clean, powerful data. If companies are working with multiple legacy systems, DataOS offers a transparent view of all available data from a single dashboard. If companies have a mix of cloud and legacy systems, they can be brought together into a seamless view that enables faster analysis and easier data integration.
It’s an operating system that works with existing tools. Companies can use DataOS to:
A data operating system offers substantial value for enterprises across industries. Some examples:
These are some basic examples of what an enterprise can do with a data operating system. With composability built right in, a company can build many different types of data architecture to suit what they need right now and in the future.
Using a cloud-based data operating system, users can set up DataOS to integrate their current systems without the need for expensive pilot projects or IT back and forth. It enables users to access the data they need through simple Google-like search functions and drag and drop desired functions for right to left engineering. Complexity is abstracted, and all data users can get the answers they need by seeing what data is available.
A data operating system provides a connective overlay, uniting all data tools within the company’s architecture—no laborious training, extensive downtime, and uncertainty. Users begin building their own reports and queries right away while the administrators see precisely what is in use and where.
Be the first to know about the latest insights from Modern.
In our previous post, The Pros and Cons of Leading Data Management and Storage Solutions, we untangled the differences among data lakes, data warehouses, data lakehouses, data hubs, and data operating systems. Remember to read part one if you need a quick refresher. ...
Data lakes, data warehouses, data hubs, data lakehouses, and data operating systems are data management and storage solutions designed to meet different needs in data analytics, integration, and processing. Each has unique advantages and drawbacks, and the right...
What is a data operating system? On the surface, it's an operating system designed specifically for managing and processing large amounts of data. It typically provides a scalable and flexible infrastructure for storing, processing, and analyzing big data and should...
Prevention and early intervention are essential to building an effective healthcare approach that supports patients from start to finish. The critical component of this approach is predictive analytics — analyzing big data gathered from patients, consumers, and...
Technical debt is something that many companies are aware of and are attempting to address. It is a big enough issue that several of our recent blog posts (Lessons in Technical Debt from Southwest Airlines, Start Paying Down Your Technical Debt Today, and A Better Way...
Data Mesh + Patient360: A Modern Revolution for Healthcare DataHealthcare organizations are sitting on a treasure trove of customer data. Operationalizing that data makes it actionable and usable, helping improve services, costs, and patient outcomes. However,...
The Modern Data Company BriefThe Modern Data Company is radically simplifying data architecture with its paradigm-shifting data operating system, DataOS. We're replacing overwhelm with composability, reinventing governance, and connecting legacy systems to your newest...
DataOS® – The Fastest Path from Data to DecisionDataOS is the world's first fully-integrated data operating system designed to move from companies from data to decision in weeks instead of months. Discover what makes DataOS different from the competition and how...
Not Getting Value from Your Data Transformation? Fix itImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure CLV. In the past, organizations have struggled...
DataOS® Solution:AI/ML 70% of AI initiatives fail and teams spend the vast majority of their time simply prepping data for platforms, leaving very little left over for gaining insights and driving business value. But an AI/ML platform powered by DataOS can achieve...