
How to drive trusted decisions without changing your current data infrastructure.
Learn more about DataOS® in our white paper.
Modern data platforms are infamously fragmented and still proliferating. Feature sets are at once duplicative and bewilderingly diverse. In order to find the best solution for a business, we need a set of standard functions that every data platform should fulfill. We can then add specialty functions as needed to identify the platform that best meets our needs.
In a previous post, The Core Principles of a Modern Data Platform, we examined the core design principles to show what users should expect from any modern data platform worthy of the name. You’ll see that those principles give shape to these essential functions.
This article will examine the essential functions of a modern data platform and how DataOS fits in. You will see how DataOS works with common data tools and, in many cases, can replace them.
DataOS is the first true data operating system. It does for your data and data stack what your computer’s operating system does for your files and applications. DataOS facilitates operations between apps, supports and enhances security, and helps your data stack perform better and more consistently. As a result, it interacts with the elements and functions of your data stack in ways that no other product does.
Everything starts with data ingestion: bringing data in from all the data sources you use into the storage systems you’ve designated for each source. This is the beginning of many data pipelines and workflows.
DataOS uses a built-in implementation of Flare to ingest data. The process can be automated and set to occur on a schedule or triggered by events elsewhere in the data stack. The operating system can also automate ingestion by any standard tool.
The data storage and processing layer is fundamental to the modern data platform. This is also one of the most rapidly evolving functions. Currently, three architectures are most common: warehouse, lake, and lakehouse.
Each architecture has its own set of tools to accomplish tasks.
DataOS is storage-agnostic. Any sort of storage volume, from a Snowflake warehouse to the hard drive of a single desktop, is abstracted as a “depot” in DataOS. DataOS works with data from any depot without moving or copying the data.
If you’re using a data warehouse, then you’re probably using a tool that leverages native SQL for transformation. The other common approach is using an orchestration engine coupled with custom transformation in a programming language like Python.
DataOS can work with a transformation tool like dbt or Matillion, passing data to the tool for transformation, then passing the transformed data to another tool for analysis or to any depot in its network. Alternatively, the built-in Flare can write and execute transformation jobs that run on Apache Spark. DataOS supports both batch and incremental workloads.
The latest BI and analytics tools are built to fit within a larger modern data platform. Generally, the goal is self-service data dashboards for individual users who want to manipulate and explore data rather than using static graphs and tables.
DataOS can pass data to a visualization tool such as Tableau, or it can use its native Apache Atlas to build reports and dashboards customized to different stakeholders.
If there is any area where modern data platforms struggle, it is aiding discovery, enabling trust, and bringing context to data. One of the best ways to do this is with rich and editable metadata. In fact, metadata is becoming “big data” in its own right. The main approaches to this function are either open-source tools or proprietary tools developed in-house.
DataOS has Apache Atlas built-in for building data catalogs and other tools such as Metis for adding and editing metadata. But as with most other cases in this article, DataOS can also work through other tools in your data stack.
Especially with the growth of regulatory frameworks for data privacy (e.g., HIPAA or GDPR), companies must manage privacy and access controls throughout their data stacks. Several tools are emerging to meet this need.
DataOS handles privacy and security through its Attribute-Based Access Control (ABAC). This is one of its most powerful features — you can assign users their access level, as well as any special access privileges, through tags. You can tag a data table, row, or column with access requirements, and from then on users will be given only the data they are authorized to see, automatically and transparently at every touch point in the network.
Download the DataOS Overview and learn how DataOS delivers on all six essential functions of a modern data platform.
Be the first to know about the latest insights from Modern.
Modern Announces Partnership with Data Mesh Pioneers, ThoughtWorks In July, we collaborated with ThoughtWorks at the annual CDOIQ Conference in Cambridge, MA to discuss real-world Data Products implementation and best practices for Data Mesh. The data community,...
In the modern data-driven landscape, organizations are constantly seeking ways to extract valuable insights from their data assets. While individual data products provide significant value, the true potential lies in harnessing the power of interconnected data...
Data Products Data products encompass several key aspects that contribute to their effectiveness and value in addressing data challenges and delivering actionable insights. These aspects ensure that data products are well-designed, user-centric, and aligned with...
There's nothing more important than customer loyalty when it comes to a business's chance of succeeding. When customers are loyal, they make repeat purchases and advocate for the brand, helping to drive new customer acquisition through word-of-mouth marketing. It's...
In our previous post, The Pros and Cons of Leading Data Management and Storage Solutions, we untangled the differences among data lakes, data warehouses, data lakehouses, data hubs, and data operating systems. Remember to read part one if you need a quick refresher. ...
Data Mesh + Patient360: A Modern Revolution for Healthcare DataHealthcare organizations are sitting on a treasure trove of customer data. Operationalizing that data makes it actionable and usable, helping improve services, costs, and patient outcomes. However,...
The Modern Data Company BriefThe Modern Data Company is radically simplifying data architecture with its paradigm-shifting data operating system, DataOS. We're replacing overwhelm with composability, reinventing governance, and connecting legacy systems to your newest...
DataOS® – The Data Product PlatformDataOS is the The Data Product Platform pioneered to enable data teams to create, deploy, and manage self-sufficient enterprise-grade data products. These data products are reusable, composable, and compatible across any data stack,...
Not Getting Value from Your Data Transformation? Fix itImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure CLV. In the past, organizations have struggled...
DataOS® Solution:AI/ML 70% of AI initiatives fail and teams spend the vast majority of their time simply prepping data for platforms, leaving very little left over for gaining insights and driving business value. But an AI/ML platform powered by DataOS can achieve...