
How to drive trusted decisions without changing your current data infrastructure.
Learn more about DataOS® in our white paper.
Artificial intelligence (AI) is something that almost every large business seems desperate to pursue. The number of companies using AI today, and the range of problems AI is being applied to, are both increasing steadily. At the same time, there is another phenomenon taking place that significantly muddies the waters when trying to understand the ways AI is being implemented today: calling a new process “AI-based” when it really isn’t AI-based. These situations usually involve some sort of process automation that, while important and impactful, isn’t tied to AI at all. Let’s explore why this has come to be.
The start of the problem is that AI has been poorly defined, and the scope of what is commonly called AI has been steadily increasing. AI was once primarily seen as covering the realm of algorithms like deep learning models used for image recognition and natural language processing models used to support customer service chat bots. In recent times, many have claimed that any analysis the entails the process “learning” from the data and making decisions is AI. Making the umbrella that large leads to the inclusion of a lot of more traditional predictive, statistical, and machine learning techniques that were not traditionally considered AI.
Many processes today are dubbed AI if there is automation involved that takes humans fully or mostly out of the loop. For example, pricing software that takes account of all recent activity to adjust the pricing of products for a website. Or, a supply chain process that automatically adjusts orders or shipment routes based on the latest data. This type of automation can be incredibly impactful. However, such automation often really doesn’t involve what was traditionally called AI. Because the computers appear to be doing everything on their own, people often think the process is intelligent and attribute it to AI.
Getting into arguments over what counts as AI and what does not is likely both a losing battle and counterproductive. In the end, if an analytical process is successfully utilizing corporate data to drive value, then celebrate it and adopt it. How you label that process is secondary. It would be silly to hold back on the deployment of a high-impact process just because people misunderstood the degree to which AI is involved. What you really want to focus on getting people to agree to is that a process is working well, that it should be deployed more broadly, and that the automation it will provide is a value driver.
Regardless of the labels applied, any significant automation based on data and analytics requires a clean and complete set of data, governance policies that allow various processes and users to access the automation, and a high level of scalability within the systems enabling all of that. That is no small order!
Luckily, there is a solution today that can help make this happen. A data operating system, such as DataOS from The Modern Data Company, can help manage all of a company’s underlying data repositories from one place. A data operating system catalogs and connects to every piece of data, regardless of where it rests, and then adds a layer of security and governance to ensure that the data is only used appropriately. Then, users can access that robust environment to create analytical processes that make use of any combination of data and push results out to wherever within the ecosystem the results need to go.
A data operating system enables the use of AI alongside any traditional analytical technique. You can build scalable, secure processes that enable automation of important corporate tasks more easily than ever before. Whatever mix of approaches you choose, a data operating system will help make your vision a reality. To learn more about how you can drive automation, whether with AI or with other techniques, schedule a quick chat with one of our data experts.
Be the first to know about the latest insights from Modern.
Modern Announces Partnership with Data Mesh Pioneers, ThoughtWorks In July, we collaborated with ThoughtWorks at the annual CDOIQ Conference in Cambridge, MA to discuss real-world Data Products implementation and best practices for Data Mesh. The data community,...
In the modern data-driven landscape, organizations are constantly seeking ways to extract valuable insights from their data assets. While individual data products provide significant value, the true potential lies in harnessing the power of interconnected data...
Data Products Data products encompass several key aspects that contribute to their effectiveness and value in addressing data challenges and delivering actionable insights. These aspects ensure that data products are well-designed, user-centric, and aligned with...
There's nothing more important than customer loyalty when it comes to a business's chance of succeeding. When customers are loyal, they make repeat purchases and advocate for the brand, helping to drive new customer acquisition through word-of-mouth marketing. It's...
In our previous post, The Pros and Cons of Leading Data Management and Storage Solutions, we untangled the differences among data lakes, data warehouses, data lakehouses, data hubs, and data operating systems. Remember to read part one if you need a quick refresher. ...
Data Mesh + Patient360: A Modern Revolution for Healthcare DataHealthcare organizations are sitting on a treasure trove of customer data. Operationalizing that data makes it actionable and usable, helping improve services, costs, and patient outcomes. However,...
The Modern Data Company BriefThe Modern Data Company is radically simplifying data architecture with its paradigm-shifting data operating system, DataOS. We're replacing overwhelm with composability, reinventing governance, and connecting legacy systems to your newest...
DataOS® – The Data Product PlatformDataOS is the The Data Product Platform pioneered to enable data teams to create, deploy, and manage self-sufficient enterprise-grade data products. These data products are reusable, composable, and compatible across any data stack,...
Not Getting Value from Your Data Transformation? Fix itImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure CLV. In the past, organizations have struggled...
DataOS® Solution:AI/ML 70% of AI initiatives fail and teams spend the vast majority of their time simply prepping data for platforms, leaving very little left over for gaining insights and driving business value. But an AI/ML platform powered by DataOS can achieve...