May 25, 2022 - 3 minutes to read
Data tools have not fully addressed today's requirements for the infrastructure layer of the data stack. The Modern Data Company (Modern) believes we're entering the golden age of data science. Still, in order for enterprises to realize the full value of their data assets, they need the final infrastructure layer in place.
Today, most companies are using separate infrastructures to handle the same data. This makes no sense. They're stitching together tools to create a semblance of infrastructure, but they end up with little data ecosystems that don't talk to each other. Instead, they need an operational data layer that provides a common, consistent layer of data to integrate everything into one single view — introducing the data operating system.
The tech industry loves the term "disruption," and for good reason. It heralds innovation. Often it means replacing an older, less efficient system with one designed to accomplish the same thing — maybe in less time, with fewer errors, or at lower cost, for example.
In business terms, disruption isn't always the foundation for excitement. It can spell downtime, upheaval in operations, lost revenue, and potentially even lost people. Disruptive technology can be a boon for the enterprise, but the implementation approach could be the difference between failure and transformation.
A data operating system like Modern's DataOS is a disruptive technology in terms of innovation. It creates the missing operational layer among data tools, assets, and infrastructures to unite data flow across the enterprise. Think about it like this.
Across history, humans have invented technologies that replaced traditional ways of doing things. For example, textiles used to be handmade, making clothing a laborious and challenging thing to create. Now, with large machinery to make even precious materials, everyone can have a closet full of clothing without investing their life savings.
Unfortunately, that meant a significant disruption in the textile industry. Where people previously made cloth by hand, only a few traditional artisanal shops remain. Although we now have productized clothing and material-making to ensure widespread accessibility and availability, the entire industry has changed in the face of the disruptive innovations that came over time.
Similarly, data has also exploded in terms of demand and volume. Companies have more data than ever before but struggle to scale solutions that can extract value. Current tools do not productize data and prevent companies from leveraging their data's full power. A data operating system can disrupt this system by creating an entirely new layer within the data stack that ties current investments together without negatively disrupting how the current elements of the system operate individually.
Enterprises worried about what this disruption means for everyday operations can take note. Modern's data operating system only disrupts the way the enterprise approaches data. It does not disrupt day-to-day operations.
DataOS works with whatever the enterprise is currently using. For example, if companies have already heavily invested in cloud data stores, DataOS can supply clean, powerful data. If companies are working with multiple legacy systems, DataOS offers a transparent view of all available data from a single dashboard. If companies have a mix of cloud and legacy systems, they can be brought together into a seamless view that enables faster analysis and easier data integration.
It's an operating system that works with existing tools. Companies can use DataOS to:
A data operating system offers substantial value for enterprises across industries. Some examples:
These are some basic examples of what an enterprise can do with a data operating system. With composability built right in, a company can build many different types of data architecture to suit what they need right now and in the future.
Using a cloud-based data operating system, users can set up DataOS to integrate their current systems without the need for expensive pilot projects or IT back and forth. It enables users to access the data they need through simple Google-like search functions and drag and drop desired functions for right to left engineering. Complexity is abstracted, and all data users can get the answers they need by seeing what data is available.
A data operating system provides a connective overlay, uniting all data tools within the company's architecture—no laborious training, extensive downtime, and uncertainty. Users begin building their own reports and queries right away while the administrators see precisely what is in use and where.
DataOS overviewBe the first to know about the latest insights from The Modern Data Company.
Four Ways Companies Can Build Next-Level Analytics Capabilities
Reducing Risk and Increasing Data’s Value in Healthcare
How Data Fabric is Changing Data Privacy for Good
Bulletproof your data strategy from the business side
5 Signs Your Organization is Becoming Data-Driven
Poor Data Health is Costly but Improving is Easier Than Ever
Technology and Data in Urban Design and Urban Management
CASE STUDY
Global Design and Architecture Firm Optimizes Space Utilization Data using Modern Data’s DataOS
CASE STUDY
$20 Billion Alcohol Distributor Increases Revenue Through Their Digital Channels with Modern Data’s DataOS
CASE STUDY
Multi-billion Dollar Government Transportation Agencies Can Improve their Data Governance using The Modern Data Company’s DataOS
Don’t power your innovative solutions with bad data. Power them with secure, governed and high-quality data every time.
Get a Demo