
How to drive trusted decisions without changing your current data infrastructure.
Learn more about DataOS in our white paper.
Companies are spending more than they think maintaining legacy systems, but what’s the alternative? Offloading them? If the thought of burning bridges with legacy systems made you sweat, there is a way to integrate these systems into your new stack without dramatically increasing (already) creeping costs or risking losing your historical data. You need a new way to think about your data warehouses and data lakes—one that addresses how these systems are evolving over time.
If legacy systems are basically doing their jobs, it’s challenging to justify the cost of upgrading. However, it’s time to take a close look at what legacy systems actually cost.
Legacy systems can cost organizations hundreds of millions of dollars to maintain. Each year, those costs grow an average of 15% and, for many companies, make up a large portion of their technology budget. Enterprises end up deep in the weeds managing these data systems with no way out and no way to relieve the burden. However, uncovering hidden costs is a step toward freeing data to achieve its true potential and stopping the budget-bleed. Hidden costs include the following:
Data should be in motion. When IT spends all its time trying to keep warehouses and lakes from becoming swamps (and liabilities), they don’t have as much time to build new tools to ensure the company can use all that data. They can’t innovate, and they can’t explore new ways to reduce silos.
Imagine that a retail company purchases a competitor. It gains valuable data but an outdated warehouse. Now, to understand their customer purchase history, they have to spend money to upgrade away from the original, disorganized framework. Technical debt—inconsistencies and incompatibilities as new components come into play—builds up over time and makes it challenging to integrate new, necessary tools.
Legacy systems can experience downtime thanks to outdated hardware and software. This downtime could cost companies an accurate view of inventory, leading to overspending in purchases and increased storage costs. It could lead to vulnerabilities as others try to manage extracting data around the outage. It also costs companies in missed business opportunities because data is not responsive.
Most retail operations have a combination of legacy warehouses and lakes storing historical data from multiple sources. Digital transformation means connecting each of these systems to functional pipelines and upgrading the architecture to make them both accessible to stakeholders.
Creating a new processing system—an operational layer, if you will—requires an understanding of the differences between these systems.
A data operating system provides the connective tissue to unite warehouses and lakes. It can simplify data pipelines and ensure that both business users and data science teams can access and query data on their own terms.
Upgrading warehouse and lakes should provide:
DataOS provides these things for enterprises currently wrestling with their legacy systems. It can integrate warehouses and lakes, all applications, and tools to create a playground for multiple user types. It removes complexity to future proof your data—all sources, all types, in one place.
A data operating system enables companies to take advantage of agile methodology despite challenges from legacy systems. Download our paper “Data Lakes 101: Making the Most of Data Lakes through Agile Methods” to find out how DataOS can increase speed and innovation while ensuring governance and security remain intact.
Be the first to know about the latest insights from Modern.
Customer data platforms (CDPs) are increasingly popular sources of customer insights. These systems are usually owned and operated by an enterprise marketing department and provide data for insights into customer trends, behavior, and customer 360 analyses....
Banking and Capital Markets are undergoing a period of transformation. The global economic outlook is somewhat fragile, but banks are in an excellent position to survive and thrive as long as they have the right tools in place. According to Deloitte’s report 2023...
Data center downtime can be costly. Gartner estimates that downtime can cost $5,600 per minute, extrapolating to well over $300K per hour. When your organization’s digital service is interrupted, it can impact employee productivity, company reputation, and customer...
Once upon a time, Gartner predicted that 40% of all data science tasks would be automated. Naturally, this caused some discussion about the future of the profession and whether it would still be the hottest position on the market. However, as the field progresses,...
One of the biggest reasons societies band together to create a governing body is to help care for members of that society. Government should help us maintain a certain standard of living, help solve societal challenges, and mobilize when disruptions happen....
Looking to the Future - How a Data Operating System Breathes Life Into Healthcare
Get to the Future Faster - Modernize Your Manufacturing Data Architecture Without Ripping and ReplacingImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure...
Get to the Future Faster - Modernize Your Manufacturing Data Architecture Without Ripping and ReplacingImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure...
Enable a Data-Informed Government - Modernize Your Data Architecture Without Ripping and ReplacingImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure CLV....
Unified Data Platform Weaves Distributed, Diverse, and Dynamic Data in Modern EnvironmentsImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure CLV. In the...