
How to drive trusted decisions without changing your current data infrastructure.
Learn more about DataOS® in our white paper.
Companies are spending more than they think maintaining legacy systems, but what’s the alternative? Offloading them? If the thought of burning bridges with legacy systems made you sweat, there is a way to integrate these systems into your new stack without dramatically increasing (already) creeping costs or risking losing your historical data. You need a new way to think about your data warehouses and data lakes—one that addresses how these systems are evolving over time.
If legacy systems are basically doing their jobs, it’s challenging to justify the cost of upgrading. However, it’s time to take a close look at what legacy systems actually cost.
Legacy systems can cost organizations hundreds of millions of dollars to maintain. Each year, those costs grow an average of 15% and, for many companies, make up a large portion of their technology budget. Enterprises end up deep in the weeds managing these data systems with no way out and no way to relieve the burden. However, uncovering hidden costs is a step toward freeing data to achieve its true potential and stopping the budget-bleed. Hidden costs include the following:
Data should be in motion. When IT spends all its time trying to keep warehouses and lakes from becoming swamps (and liabilities), they don’t have as much time to build new tools to ensure the company can use all that data. They can’t innovate, and they can’t explore new ways to reduce silos.
Imagine that a retail company purchases a competitor. It gains valuable data but an outdated warehouse. Now, to understand their customer purchase history, they have to spend money to upgrade away from the original, disorganized framework. Technical debt—inconsistencies and incompatibilities as new components come into play—builds up over time and makes it challenging to integrate new, necessary tools.
Legacy systems can experience downtime thanks to outdated hardware and software. This downtime could cost companies an accurate view of inventory, leading to overspending in purchases and increased storage costs. It could lead to vulnerabilities as others try to manage extracting data around the outage. It also costs companies in missed business opportunities because data is not responsive.
Most retail operations have a combination of legacy warehouses and lakes storing historical data from multiple sources. Digital transformation means connecting each of these systems to functional pipelines and upgrading the architecture to make them both accessible to stakeholders.
Creating a new processing system—an operational layer, if you will—requires an understanding of the differences between these systems.
A data operating system provides the connective tissue to unite warehouses and lakes. It can simplify data pipelines and ensure that both business users and data science teams can access and query data on their own terms.
Upgrading warehouse and lakes should provide:
DataOS provides these things for enterprises currently wrestling with their legacy systems. It can integrate warehouses and lakes, all applications, and tools to create a playground for multiple user types. It removes complexity to future proof your data—all sources, all types, in one place.
A data operating system enables companies to take advantage of agile methodology despite challenges from legacy systems. Download our paper “Data Lakes 101: Making the Most of Data Lakes through Agile Methods” to find out how DataOS can increase speed and innovation while ensuring governance and security remain intact.
Be the first to know about the latest insights from Modern.
In our previous post, The Pros and Cons of Leading Data Management and Storage Solutions, we untangled the differences among data lakes, data warehouses, data lakehouses, data hubs, and data operating systems. Remember to read part one if you need a quick refresher. ...
Data lakes, data warehouses, data hubs, data lakehouses, and data operating systems are data management and storage solutions designed to meet different needs in data analytics, integration, and processing. Each has unique advantages and drawbacks, and the right...
What is a data operating system? On the surface, it's an operating system designed specifically for managing and processing large amounts of data. It typically provides a scalable and flexible infrastructure for storing, processing, and analyzing big data and should...
Prevention and early intervention are essential to building an effective healthcare approach that supports patients from start to finish. The critical component of this approach is predictive analytics — analyzing big data gathered from patients, consumers, and...
Technical debt is something that many companies are aware of and are attempting to address. It is a big enough issue that several of our recent blog posts (Lessons in Technical Debt from Southwest Airlines, Start Paying Down Your Technical Debt Today, and A Better Way...
Data Mesh + Patient360: A Modern Revolution for Healthcare DataHealthcare organizations are sitting on a treasure trove of customer data. Operationalizing that data makes it actionable and usable, helping improve services, costs, and patient outcomes. However,...
The Modern Data Company BriefThe Modern Data Company is radically simplifying data architecture with its paradigm-shifting data operating system, DataOS. We're replacing overwhelm with composability, reinventing governance, and connecting legacy systems to your newest...
DataOS® – The Fastest Path from Data to DecisionDataOS is the world's first fully-integrated data operating system designed to move from companies from data to decision in weeks instead of months. Discover what makes DataOS different from the competition and how...
Not Getting Value from Your Data Transformation? Fix itImplementing customer lifetime value as a mission-critical KPI has many challenges. Companies need consistent, high-quality data and a straightforward way to measure CLV. In the past, organizations have struggled...
DataOS® Solution:AI/ML 70% of AI initiatives fail and teams spend the vast majority of their time simply prepping data for platforms, leaving very little left over for gaining insights and driving business value. But an AI/ML platform powered by DataOS can achieve...